
G. Cormier and R. Boudreau Vol. 17, No. 1 /January 2000 /J. Opt. Soc. Am. A 129
Genetic algorithm for ellipsometric data inversion
of absorbing layers
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A new data reduction method is presented for single-wavelength ellipsometry. A genetic algorithm is applied
to ellipsometric data to find the best fit. The sample consists of a single absorbing layer on a semi-infinite
substrate. The genetic algorithm has good convergence and is applicable to many different problems, includ-
ing those with different independent measurements and situations with more than two angles of incidence.
Results are similar to those obtained by other inversion techniques. © 2000 Optical Society of America
[S0740-3232(00)02201-8]
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1. INTRODUCTION
Ellipsometry is a well-known technique used to determine
the optical properties of thin films. It is based on the
principle that polarized light changes polarization state
when reflected. Once a sample is irradiated with light of
known polarization, wavelength, and incidence angle, in-
formation regarding the optical properties of the film and
its thickness may be collected.

The ellipsometric equation is well known and is pre-
sented in many texts. If the measured sample can be
treated as a bulk substrate with a perfect surface, the re-
flection ratio can be expressed as

r 5 rp /rs 5 tan~ c!exp~iD!, (1)

where rp and rs are the Fresnel reflection ratios for the
components parallel (p) and perpendicular (s), respec-
tively, to the plane of incidence. Written in polar form,
the complex ratio can be expressed with the two param-
eters c and D (the ellipsometric angles), where tan c and
D describe the amplitude ratio and the phase difference,
respectively, between the p and s components. If the
sample consists of a substrate with one or two more films,
the measured reflection ratio can be written as

Rp /Rs 5 tan c exp~iD!, (2)

where the reflection coefficients Rp and Rs are functions
of the Fresnel reflection coefficients for the interfaces and
the film thicknesses.1

For standard single-wavelength ellipsometry of an ab-
sorbing film with a known substrate, there are usually
three unknowns: n, the real part of the refractive index;
k, the imaginary part of the refractive index (the extinc-
tion coefficient); and d, the film thickness. Once the
angles c and D have been measured, the problem is then
to find an algorithm to inverse this data and determine
the three unknowns, since no direct analytical solution
can be found. The ellipsometric angles are measured at
more than one incidence angle.

Standard inversion algorithms require a starting point,
or initial value. This initial value must usually be near
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the correct value or the algorithm does not converge and
computation time may be high, although with the expo-
nentially rapid development of computers, the latter re-
quirement is less of a concern.

We propose to use a genetic algorithm to inverse ellip-
sometric data. Genetic algorithms do not require a start-
ing point and in general have a greater range of conver-
gence than other inversion techniques. They are readily
adaptable to many different problems and also have low
computation times. They also do not require the evalua-
tion of derivatives, instead relying on a merit function to
improve performance.

2. BACKGROUND
Some of the first methods used to solve the ellipsometric
inversion problem were polynomial inversion techniques.
Among the first were those of McCrackin and Colson.2

Their algorithm determined two of the parameters, n and
d, when a third, k, was known. The algorithm still re-
quired an initial value, and this value had to be close to
the solution. However, uncertainties in the measure-
ments and in the method’s precision rendered this algo-
rithm impractical. Other researchers, such as Reinberg3

and later Easwarakhanthan et al.,4 used a multidimen-
sional Newton algorithm (or a variation) to compute the
film properties. Computing time was good, but this tech-
nique had some convergence problems, especially for films
less than 40 nm thick.

More recently, Urban5 proposed a new method, using
an algorithm of variably damped least squares. He com-
puted the intersection of two solution curves at different
incidence angles. Two intersections are found, one for a
plot of n versus d and one for d versus k. These curves
intersect at the correct solution of (n, k, d). If the model
is correct and the data are precise, the two solutions
should be almost identical. Drolet et al.6 proposed a new
approach to the inversion problem. They considered the
case of nonabsorbing layers (k 5 0) and separated the
problem into two steps: One step implies solving an
equation that depends only on the refractive index, and
2000 Optical Society of America
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the second step is finding the film thickness. They re-
duced the refractive index equation to a fifth-degree poly-
nomial and obtained a solution by finding its roots. Re-
sults were good and computation time was small,
although problems were encountered that are related
mainly to root solving and are not specific to the ellipso-
metric equations.

The Levenberg–Marquardt algorithm can also be used
for spectroscopic ellipsometry.7 It is a nonlinear least-
squares regression method and is thus very good at han-
dling many noisy measurements. Care is warranted if
the Levenberg–Marquardt algorithm is used, since it may
get caught in a local minimum.

An interesting paper was presented by Bosch et al.8

They proposed modifying a downhill simplex algorithm to
inverse data; their algorithm better integrated experi-
mental data and used a better fitting procedure. In order
to converge, the algorithm tries to minimize a certain
function, in this case the biased estimator, recommended
by Jellison7 as a better interpretation technique. A plot
of the merit function (the function to minimize) versus
one of the three unknowns was made. The solution cor-
responds to the minimum of this plot. These curves were
obtained by keeping one of the three unknowns constant
and finding a value for the other two unknowns and com-
puting the value of the merit function. Results obtained
were very good even in the presence of noise.

3. GENETIC ALGORITHM
Genetic algorithms (GA’s) were initially developed by
Holland.9 They are based on the mechanics of natural
evolution and natural genetics and differ from usual in-
version algorithms because they do not require a starting
value. They use a survival-of-the-fittest scheme with a
random organized search to find the best solution to a
problem. They have a variety of applications10 and are
as robust as other inversion techniques. Genetic algo-
rithms are also easily applicable to problems with many
unknowns. Although they have been used in many dif-
ferent fields, genetic algorithms are relatively new to the
field of optics. One such application can be found in Ref.
11.

The basic genetic algorithm has the following struc-
ture:

Create an initial population
Repeat

Selection
Crossover
Mutation

Verify whether end condition is met

A. Initial Population
An initial population is first created, randomly, of h indi-
viduals. Each individual represents a possible solution
to the problem: in this case, values of (n, k, d) that solve
the ellipsometric equations. An individual is composed
of chromosomes, and each chromosome is composed of
genes. For this problem, individuals have only one chro-
mosome (and thus the terms individual and chromosome
are interchangeable here) and are composed of three
genes, since we are solving for three variables. Individu-
als are usually coded as bit strings called binary-coded
GA’s.10 Davis12 has shown that real-coded GA’s usually
outperform GA’s coded with bits, and such individuals are
represented here with real numbers. The individuals
that constitute the initial population are created within a
specified solution interval or boundary. For example,
given bounds of 2.5 , n , 3.5, 0 , k , 0.1, and 10 , d
, 30, two individuals might be

n k d

2.74 0.054 12.8
3.19 0.006 28.3

B. Selection
Once the initial population is created, each individual’s
performance is evaluated. The performance of an indi-
vidual is a measure of how ‘‘good’’ this particular solution
to the problem is. This measure is created by calculating
the value of the objective function, the function to mini-
mize. For ellipsometric data reduction, the objective
function is the merit function x2,

x2 5
1

N (
m51

N F S Dm 2 Dc

eD D 2

1 S cm 2 cc

ec D 2G , (3)

where N is the number of measurements and eD and ec

are the experimental errors of D and c, respectively. The
subscript m indicates the measured values, and the sub-
script c indicates computed values. This function has in-
teresting qualities, since it is a useful indicator of statis-
tical significance. The fit is good if x2 ' 1, meaning that
the errors are of the same magnitude as the measure-
ments. Should x2 @ 1, the fit deviates significantly from
the experimental data. Should x2 ! 1, the error may
have been overestimated.7

The parallel and perpendicular reflection coefficients,
Rp and Rs , respectively, can be computed for each indi-
vidual in the population from the values of n, k, and d.
The amplitude ratio cc and the phase difference Dc can
then be determined, and the value of x2 is computed and
becomes the individual’s fitness. Once each individual’s
fitness is computed, the population is ranked and each in-
dividual is given a probability of reproduction, PR.

A few ranking methods exist, but the one used was de-
veloped by Davis.12 The individual with the best perfor-
mance receives a relative weight (RW) of ha, where a is
usually chosen between 1.0 and 1.5. The second-best in-
dividual receives a relative weight of (h 2 1)a, and so on
until the worst individual receives a relative weight of 1.
The PR for each individual is then computed as follows:

PRj 5
RWj

1

h (
j51

h

RWj

. (4)

As can be seen, the fittest individuals have a higher prob-
ability of reproduction than do those with a lesser perfor-
mance. A stochastic-remainder selection procedure10 is
then used to determine the frequency of reproduction.
Only the integer part of the PR is considered. For ex-
ample, a PR of 2.1 means that the individual will repro-
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duce twice, and an individual of PR 1.9 will reproduce
only once. The rest of the population is made up of the
sorted list of fractional parts.

C. Crossover
To generate offspring, a pair of individuals is randomly
selected according to their PR’s. These individuals be-
come parents for the individuals of the next generation.
The probability that an individual will be selected is pro-
portional to its PR.

Once a pair is selected, a check is made to see whether
reproduction occurs. Should reproduction occur (accord-
ing to the probability of crossover, pc), three offspring are
generated according to the following procedure:13

0.5p1 1 0.5p2 ,

1.5p1 2 0.5p2 ,

20.5p1 1 1.5p2 , (5)

where p1 and p2 are the two parents. The best two off-
spring are selected in order to keep the population size
constant. The probability of crossover is usually chosen
to be between 0.85 and 1. If we use the two individuals
of the example of Subsection 3.B, the three offspring cre-
ated are

n k d

2.965 0.030 20.55
2.515 0.078 5.05
3.415 20.018 (0.087) 36.05 (13.9)

Here the third offspring has values that are not within
the specified bounds for k and d. New, random values
are then assigned to the parameters that are not within
bounds (they are the values within parentheses).

D. Mutation
To ensure variability in the evolutionary process, a chro-
mosome can be subjected to a mutation. A mutation is a
random modification of a parameter (gene). A probabil-
ity of mutation is defined, pm , usually chosen to be be-
tween 0.0001 and 0.1. Should mutation occur, a nonuni-
form mutation14 is performed. One of the parameters is
modified as follows, after a flip from an unbiased coin,

Vi 5 H Vi 1 d ~UB 2 Vi! ~heads!

Vi 2 d ~Vi 2 LB! ~tails!
, (6)

where UB is the upper bound of the parameter being mu-
tated and LB is the lower bound. The delta function d is
defined as

d ~ y ! 5 y@r~1 2 t/T !B# (7)

where r is a random number between 0 and 1, t is the cur-
rent generation, T is the maximum generation, and B is a
parameter that determines the degree of dependence on
the actual generation (usually between 1 and 5). From
Eq. (7) it can be seen that the amplitude of the mutation
decreases as the number of generations increases. This
kind of mutation is called nonuniform. Suppose that an
individual of values n 5 2.965, k 5 0.03, and d 5 20.55
were to be mutated and that gene 2 had been chosen for
mutation. If t 5 10, T 5 100, UB 5 0.1, LB 5 0, B
5 5, r 5 0.296, and heads were chosen by the flip of a
coin, the value for gene 2 would now be 0.042.

For the problems treated here, elitism10 had to be used
for the GA to converge. Once crossover and mutation
have been performed, a check is made to see if individuals
of the next generation are better than those of the previ-
ous one. The best individual of a generation is called the
elite. If the best individual of the next generation, t
1 1, is better than the best individual of the previous
generation, t, then that individual becomes the new elite
individual. If the current elite is better than the best in-
dividual of the new generation, then the elite is preserved
to the next generation. Elitism is done to ensure that
good genetic information is not destroyed during repro-
duction.

Once a new generation is created, the old one is erased.
The process of selection, crossover (reproduction), and
mutation is repeated until a maximum number of genera-
tions is obtained or until the objective function has
reached a predetermined value.

4. IMPLEMENTATION
As stated above, the problem now is to inverse the ellip-
sometric data with an algorithm. Implementing the ge-
netic algorithm is simple. The merit function chosen has
some interesting qualities,8 and the genetic algorithm can
easily take advantage of these. Certain parameters
must be set, such as the weight exponent, a, the mutation
operator, B, the probability of crossover, pc , the probabil-
ity of mutation, pm , the maximum number of genera-
tions, T, and the initial population size, h. These param-
eters are set to standard values and then tweaked to find
the right combination that optimizes convergence time.
For implementation of the GA to ellipsometric data, the
values contained in Table 1 were found to have best per-
formance.

Note that the number of generations is variable. In
certain test cases, more generations were necessary to at-
tain total convergence. Usually, GA’s converge at 200
generations or less. Certain test cases required 800 gen-
erations, owing to the complexity of the problem.

Initial population size is also an issue. Usually a
population size of six or seven times the number of vari-
ables is enough to diversify the population. For this
problem, a population size of 100 was found to be neces-
sary to ensure convergence. Since the value of the objec-
tive function varies enormously if one is slightly off the
correct solution, a large population is necessary to provide
diversification.

Table 1. Optimized Parameters for the GA

Weight (a) 1.2
Mutation operator (B) 3.0
Probability of crossover ( pc) 0.95
Probability of mutation ( pm) 0.05
Number of generations (T) Variable
Initial population size (h) 100 individuals
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Implementing the algorithm is readily done. The only
values to be specified are the number of genes (the num-
ber of variables) and the boundaries for these genes, and
the rest is done by the GA. Computation time is rela-
tively quick on a personal computer, from 5 to 20 s de-
pending on the number of generations and the population
size.

5. NUMERICAL ANALYSIS
We performed a number of simulations to test the algo-
rithm. Imaginary samples of different thickness and
composition were considered, and random noise was
added to the computed ellipsometric data to simulate
noise in experimental data. The standard deviation of
the added noise was also considered to be the experimen-
tal error of the measurements.

The first sample considered is a sample of TiO2 on
glass. The film has the following characteristics: n
5 2.625, k 5 0.015, and d 5 417 nm. The substrate
has values ns 5 1.523 and ks 5 0. Light wavelength is
370 nm and the ambient medium is air (n 5 1). Table 2
shows the computed values of D and c for four angles of
incidence, rounded to the third decimal, and Table 3
shows the same data with random, Gaussian noise added.
Noise was added with a random-number generator of
specified mean and standard deviation. For the first test
case, noise of standard deviations 0.02° and 0.01° was
specified, as this is the optimum efficiency of a standard
null ellipsometer. Table 3 thus represents the measured
values Dm and cm . These data were selected for com-
parison with previously published material.8

Table 2. Computed Values of D and c for a
Sample of TiO2

a on Glassb for Four Incidence
Anglesc

Incidence
Angle

f

Ellipsometric Angle

D c

45 170.916 31.981
60 169.064 21.367
70 168.743 8.583
80 357.437 13.043

a n 5 2.625, k 5 0.015, d 5 417 nm.
b ns 5 1.523, ks 5 0.
c l 5 370 nm (Ref. 8).

Table 3. Computed Values of D and c (from Table
2) with Added Random Noise of 0.02° and 0.01°

Standard Deviation, Respectivelya

Incidence
Angle

f

Ellipsometric Angle

Dm cm

45 170.96 31.98
60 169.07 21.37
70 168.73 8.56
80 357.47 13.05

a Ref. 8.
The data of Table 3 were incorporated into the GA as
the measured values. For each individual (made up of n,
k, and d) of the population, values of D and c were com-
puted and input into the objective function. For this
case, the GA converged to values of n 5 2.626, k
5 0.0153, and d 5 416.8 nm. The value of the objective
function [Eq. (3)] is 0.999. Convergence is obtained after
approximately 20 generations. A plot of the convergence
for three trial runs is shown in Fig. 1. The boundaries
used in this trial were 2.5 , n , 2.9, 0.001 , k , 0.05,
and 375 , d , 460 nm.

Convergence toward the best solution is not always en-
sured. Recall that the film thickness is periodic.15 For
this particular problem, the periodicity is approximately
75 nm, which is within the search bounds. Since the ini-
tial population is chosen at random, it is possible that the
best individual is one that is closest to the other periodic
solution. Given that the best individual is also repro-
duced more often, the algorithm may converge to the
other solution. Increasing the population size and reduc-
ing the weight of the best individuals solves this problem.

Different levels of noise were considered to test the al-
gorithm. This is reflected in the data of Tables 4 and 5.
Table 4 shows data for the angles D and c where random
noise of standard deviations 0.5° and 0.25°, respectively,
were added.

Results obtained with the data from Table 4 show that
precision decreases as error increases. The GA con-
verges to values of n 5 2.665, k 5 0.0206, and d
5 409.8 nm. The objective function has a value of 1.14.
Now we take another interesting case, where the error is
known and is different for each measurement. Table 5
contains these data.

In this case, the GA converges to values of n 5 2.617,
k 5 0.0134, and d 5 418.5 nm, with an objective function
value of 1.15. Should the error on the measurements be
unknown, a very possible real situation, one can simply
assume that eD 5 2 and ec 5 1, since the error on D is
usually twice that of c (Ref. 8). For this interesting case,
with the data of Table 3, the GA converges to values of
n 5 2.615, k 5 0.0137, and d 5 418.8 nm. The objective
function has a value of 0.019, but this value has no real
significance, since the errors chosen here have no physical
basis. We can say that the error has been overestimated,
since the objective function is !1, and we know that this
is true since the errors were 0.02° and 0.01°.

To test the algorithm further, consider another film–
substrate system.8 In this case, the film has properties of
n 5 3.410, k 5 2.630, and d 5 10 nm. The substrate is
ns 5 3.858 and ks 5 0.018. Measurements are at l
5 632.8 nm. Values of D and c were generated and
rounded to the third decimal. For the first test, we con-
sidered the data to be exact, meaning eD 5 1 and ec

5 1 (no weighting is done by the errors). The GA con-
verges to n 5 3.412, k 5 2.623, and d 5 10.03 nm. The
problem is much more complex, as the GA converges only
after 800 generations for all trials. The objective func-
tion is 0.999. In this case, the boundaries for the three
unknowns are 3.0 , n , 4.0, 1.5 , k , 3.5, and 1.0
, d , 30 nm. To simulate a more real situation, the
data were rounded to the second decimal point and the er-
rors were considered to be eD 5 0.02° and ec 5 0.01°.
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Fig. 1. Evolution of the objective function as the generation increases for three different trials (Dm ,cm from Table 3). Note that con-
vergence is achieved after approximately 20 generations.
The algorithm still converges, at a point of n 5 3.369, k
5 2.764, and d 5 9.40 nm. The objective function has a
value of 1.14.

Table 4. Computed Values of D and c (from Table
2) with Added Random Noise of 0.5° and 0.25°

Standard Deviation, Respectivelya

Incidence
Angle

f

Ellipsometric Angle

D c

45 171.21 32.40
60 169.22 21.47
70 169.19 8.34
80 358.51 12.97

a Ref. 8.

Table 5. Data Obtained by Adding to the Data of
Table 2 Gaussian Noise with Different Standard

Deviationsa

Incidence
Angle

f

Ellipsometric Angle
Standard
Deviation

Dm cm s D s c

45 170.95 31.93 0.22 0.06
60 168.73 21.48 0.38 0.06
70 169.23 8.42 0.52 0.20
80 357.14 13.01 0.44 0.12

a Ref. 8. The measurement errors eD and ec were chosen to be the
same as the standard deviations.
Another test was done on a third film–substrate sys-
tem, where the film is n 5 1.6, k 5 0.5, and d 5 25 nm.
The substrate is ns 5 3.85 and ks 5 0.02, and measure-
ments are made at l 5 632.8 nm. This time, data are
generated for only two angles of incidence, 50° and 70°,
and no noise is added to the data. The GA converges to
n 5 1.599, k 5 0.505, and d 5 24.94 nm, with an objec-
tive function value of 6.4 3 1025 after 200 generations.

A final simulation was done with a film of n 5 2.2, k
5 0.22, and d 5 10 nm on a substrate of ns 5 4.05, and
ks 5 0.028 with l 5 546.1 nm. Data were computed and
then noise was added with standard deviation of 0.02°
and 0.01°. Two trials were done, one with two angles of
incidence and one with four angles of incidence. Table 6
shows the data with and without added noise.

The GA converges after 500 generations to n 5 1.98,
k 5 0.34, and d 5 9.59 nm. The objective function is
1.48. Table 7 shows data from the same substrate as in
Table 6, this time with measurements at four angles in-
stead of two. Again, noise was added to the data to simu-
late experimental errors. Noise of standard deviation
0.02° and 0.01° is added.

One would think that the algorithm would be able to
find a better solution with four than with only two mea-
surements. The GA converges to n 5 1.8, k 5 0.75, and
d 5 8.32 nm, where the objective function is 1.99. This
shows that taking more measurements does not necessar-
ily improve precision, because of measurement errors.

6. RESULTS AND DISCUSSION
Results obtained by the GA are similar to those obtained
by the modified downhill simplex algorithm8 and the re-
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sults of other inversion techniques. The GA was tested
on a number of test cases, and results obtained are quite
good. Also, the genetic algorithm does not require a
starting value, so evaluation of an unknown sample is
possible. The only problem to be aware of is the period-
icity of the sample thickness. If the layer periodicity is
within the search bounds, the algorithm may converge to
the periodic thickness, and although the answer is math-
ematically correct, it does not represent the actual physi-
cal thickness. Computation times of the GA vary, but a
trial of 200 generations with a population of 100 requires
approximately 16 s to compute on a P-II 400-MHz per-
sonal computer. Some problems with GA’s can be solved
without the use of elitism, but in this case elitism was
necessary to ensure convergence. Without elitism, the
algorithm fluctuated wildly and did not converge to a
minimum.

7. CONCLUSION
A new method has been proposed to invert ellipsometric
data. A genetic algorithm has been applied to data to de-
termine the optical properties of thin films. The GA is
easy to implement and does not require much computa-
tion time. A number of test cases have been done to
simulate real situations. The GA performs well, converg-
ing to the best possible values. The GA can be used in a
number of different situations, such as cases with differ-
ent numbers of measurements or different errors on the
measurements.

Table 6. Data Generated for a Film of n 5 2.2, k
5 0.22, and d 5 10 nm on a Substrate of ns 5 4.05

and ks 5 0.028 with l 5 546.1 nm

Incidence
Angle

f

Generated Data Noise Added

D c Dm cm

50 172.393 31.959 172.39a 31.96b

70 145.506 12.886 145.49a 12.89b

a Added noise of 0.02° standard deviation.
b Added noise of 0.01° standard deviation.

Table 7. Data Generated for a Film of n 5 2.2, k
5 0.22, and d 5 10 nm on a Substrate of ns 5 4.05

and ks 5 0.028 with l 5 546.1 nm

Incidence
Angle

f

Generated Data Noise Added

D c Dm cm

45 174.267 34.835 174.30a 34.84b

50 172.393 31.959 172.41a 31.96b

70 145.506 12.886 145.48a 12.88b

80 32.836 13.417 32.84a 13.40b

a Added noise of 0.02° standard deviation.
b Added noise of 0.01° standard deviation.
The GA can easily be applied to systems with more
than one layer, since the method does not require evalu-
ation of derivatives and can easily be adapted to any
number of variables.
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